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Abstract

It is difficult to estimate solute transport parameters in streams empirically and numerous approaches have been investigated in

the past. In the current study, we explored the use of the simulated annealing (SA) algorithm for estimating solute transport
parameters in streams from tracer experiment data. For a simple one-dimensional dispersion test case, the standard SA algorithm
was very slow to converge. To remedy the problem of slow convergence of the annealing optimization, we proposed three strategies

to modify the standard SA algorithm and improve the converging speed. The proposed three strategies are: (1) imposing parameter
space constraints; (2) adding a valve value for inner loop break; and (3) including an inner loop memory function. We conducted
a numerical experiment to test and demonstrate the effectiveness of the modified SA algorithm for estimating three major solute

transport parameters: longitudinal dispersion coefficient, cross-sectional averaged flow velocity, and tracer mass loading. We then
discussed the advantages and limitations of the proposed algorithm.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Important parameters that govern the transport of
solute in streams include longitudinal dispersion coeff-
icient DL, cross-sectional averaged velocity v etc. The
most common way for determining these parameters is
through conducting tracer experiments and analysing the
observed tracer concentration profiles. Methods for
estimating transport parameters from tracer data were
mostly based on approximating Taylor’s analytical
solution (1954), and often plagued by the errors intro-
duced by the approximation and numerical integration
etc. Singh and Beck (2003) gave a detailed account on the
limitations of these methods, and proposed a new routing
method that is free from the previously mentioned errors.
They then applied Marquardt Method to solve the non-
linear least square problem to obtain optimal parameter
estimates. In a separate report, Singh (2003) proposed
a new method for the treatment of stagnant zones in
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streams and also applied similar non-linear regression
approach to estimate optimal solute transport parame-
ters. Other recent works on estimating solute transport
parameters in streams include Swamee et al. (2000), Deng
et al. (2002) and Seo and Baek (2004). Detailed surveys of
historical development of this line of research can be
found in these works.

When analytical expressions for concentration pro-
files are available, gradient search based non-linear
regression algorithms such as Marquardt Method are
commonly used to obtain optimal transport parameter
estimates. The applications of these methods, however,
require the objective function to be smooth, which may
not always be the case for complex objective functions.
Further, for the applications where local optimal
solutions existed, non-unique solutions could result
from different initial parameter values (Li et al., 1999).
In the current study, we explored the possibility of using
a non-gradient based direct search algorithm, the
simulated annealing (SA), for optimal solute transport
parameter estimation. Such an exploration to our
knowledge has not been attempted before.

Simulated annealing (SA) is a global optimization
technique that is not based on gradient search. Instead it
was derived from statistical mechanics by mimicking the
physical annealing process (i.e., the cooling of molten
substances to crystalline lattices of minimum energy).
Kirkpatrick et al. (1983) first proposed and demonstrated
the use of SA in solving the combinatorial optimization
problems. The application of SA was later extended to
the optimization of continuous functions (e.g., Boha-
chevsky et al., 1986). Recently, SA also found applica-
tions in problems of groundwater management (e.g.,
Johnson and Rogers, 2001), agricultural water manage-
ment (e.g., Kuo et al., 2001), and parameter estimation
for solute transport in porous media (Li et al., 1999). In
this paper we explored the use of SA for estimating solute
transport parameters in streams from tracer experiment
data. For a simple one-dimensional transport problem,
we found that the standard SA algorithm was very slow
to converge. To speedup the SA optimization, we
proposed three strategies to modify the standard SA
algorithm, including (1) imposing parameter space
constraints; (2) adding a valve value for inner loop break;
and (3) including an inner loop memory function. We
then used a numerical experiment to test and demonstrate
the effectiveness of the modified SA algorithm for
estimating solute transport parameters in streams.

2. Simulated annealing and its improvement

2.1. Standard simulated annealing algorithm

Inspired by the Monte Carlo method introduced by
Metropolis et al. (1953), Kirkpatrick et al. (1983)
developed the SA technique for the optimization of
combinatorial problem. It makes the analogy between
the state of each molecule that determines the energy
function and the value of each parameter that affects the
objective functions. It then uses the statistical mechanics
principle for energy minimization to minimize the
objective function and optimize the parameter estimates.
Starting with a high temperature, it randomly perturbs
the parameter values and calculates the resulting
objective function. The new state of objective function
after perturbation is then accepted by a probability
determined by the Metropolis criterion. The system
temperature is then gradually reduced as the random
perturbation proceeds, until the objective function
reaches its global or nearly global minimum (Kirkpa-
trick et al., 1983). A typical SA algorithm is described as
follows (also see Fig. 1):

Step 1 Specify initial temperature TkZ T0 for kZ 0;
randomly initialize the parameter set estimate
q*Z q0.

Step 2 Under kth temperature, if the inner loop break
condition is met, go to step 3; otherwise, for
( jC 1)th perturbation, randomly produce a new
parameter set qj C 1, compute the change in
objective function DfZ f(q*)� f(qj C 1). If
Df% 0, accept qj C 1(q*Z qj); if not, follow the
Metropolis criterion to accept qj C 1 with a prob-
ability of min

�
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�
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Fig. 1. The flow chart of modified SA algorithm. Boxes with solid lines

are original SA algorithm components, and boxes with dashed lines are

added new components.
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Step 3 Reduce Tk to Tk C 1 following a specified cooling
schedule. If outer loop break condition is met,
computation stops and optimal parameter set is
reached; if not, return back to step 2.

The steps outlined above consist of one inner loop
(step 2) and one outer loop (step 3). The proceeding of
SA is mainly controlled by (1) the choice of T0; (2) the
way a new perturbation is generated; (3) the inner loop
break conditions; (4) the choice of cooling schedule; and
(5) the outer loop break conditions. We will specify these
control conditions later in our SA implementation.

2.2. Modified simulated annealing algorithm

The slow convergence of standard SA algorithm is
a common drawback in its application. As demonstrated
in the application given later, a similar problem existed
in using standard SA for a simple one-dimensional
dispersion problem. It is therefore necessary to modify
the standard SA algorithm to speedup the convergence
and reduce the computational cost. In this study we
proposed following three strategies to improve the SA
optimization speed:

(1) Parameter space constraints: theoretically any non-
negative real numbers could be the transport
parameter values. In a specific application, however,
practitioners can often specify a much narrower
range for each parameter to be estimated. Obvi-
ously, the narrower the range is, the faster it will be
for the computation to converge.

(2) A valve value for inner loop break: normally
a maximum number of perturbations within each
temperature (or the so called Markov chain length)
is specified as the inner loop break condition. In
addition to that, we specified an inner loop valve
value 3in to break the inner loop iteration when
f! 3in.

(3) Inner loop memory: normally the end of inner loop
parameter estimates will be passed onto the next
loop after the temperature is reduced. We added
a memory function to the inner loop which would
remember the parameter set of the minimum
objective function occurred during current inner
loop, and used it as the beginning parameter
estimates for the next inner loop.

Fig. 1 gives a flow chart of the modified SA algorithm
as explained above.

2.3. Objective function and simulation
control conditions

To determine the solute transport parameters, such as
the longitudinal dispersion coefficient DL and cross-
sectional averaged flow velocity v, from trace tests, we
used Taylor’s (1954) analytical solution for concentra-
tion variation along the stream length after an instan-
taneous release of certain tracer mass. The solution can
be written as:

cðx; tÞZ M

A
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4DLpt

p exp

 
�ðx� vtÞ2

4DLt

!
ð1Þ

where c – the tracer concentration; M – the mass of
tracer released at xZ 0 and tZ 0; A – the cross-
sectional area of the stream; t – time; x – the distance
between the sampling spot and tracer released point.

To apply SA optimization for parameter estimation,
we define the objective function f as

f
�
q�
�
Z

1

n

Xn
iZ1

�
coi � cci

�2 ð2Þ

where q* – the parameter set estimate; coi – the ith
observed tracer concentration; cci – the corresponding ith
tracer concentration computed by using Eq. (1) and q*;
n – the number of observations. The goal of SA
optimization is to find a set of q* that will minimize f
as defined in Eq. (2). In our exercise, we used (DL, v, m)
as the unknown parameter set to be estimated, where
m is the tracer mass loading intensity and is defined as
M/A.

To implement the modified SA, we specified the
simulation control conditions as follows.

(1) Initial temperature: we determined the initial tem-
perature using the following formulae:

c0Zexp

 
��DfC

T0

!
ð3Þ

where c0 is the initial probability for acceptance, and
was set as 0.8 in current work; �DfC is the averaged
increment of objective function over the averaged
value of objective function after multiple perturba-
tions. Here we used 10 000 times of perturbations to
determine �DfC and calculate T0.

(2) Perturbation generating function: we used
uniform random number to produce parameter set
perturbation. The new parameter set qj C 1Z
qjC rqj [0.5�RND(0,1)], where qj is the current
parameter set estimate; qj C 1 is the parameter set
after perturbation; r is the perturbation coefficient,
Z0.1 in current study; RND(0,1) is an uniform
random number between 0 and 1.

(3) Cooling schedule: we used a power cooling schedule
for temperature reduction, which is Tk C 1Z lTk

with 0! l! 1. We varied l between 0.4 and 0.95 in
the current study.
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(4) Inner loop break conditions: the inner loop will
break when the number of iteration exceeds the
specified Markov chain length or when f! 3in. We
varied 3in between 0.005 and 0.00005 in the current
study.

(5) Outer loop break conditions: the outer loop will break
when the number of outer loop exceeds 12 000 or
when f! 3out, the outer loop valve value which was
specified as 0.00005 in the current exercise. If the
outer loop breaks before f reaches 3out, we consider
that the SA optimization failed to converge.

3. Numerical tests and results

We assumed an ideal transport of certain tracer mass
after an instantaneous release in a one-dimensional
stream. Further we assumed no measurement errors. We
then used Eq. (1) and a set of true parameters (DLZ
3000 m2/min; vZ 30 m/min; mZ 0.5 kg/m2) to generate
a series of (coi ; ti) at xZ 500 m as given in Table 1.

We assumed DL, v, and m values were unknown and
to be estimated, and specified their possible ranges as
300!DL! 30 000, 3! v! 300, and 0.05!m! 5.0.
We then applied the modified SA algorithm and control
conditions given above to the observed data series in
Table 1 and obtained the best estimates of the transport
parameters as DLZ 3052.8 m2/min; vZ 29.8 m/min;
mZ 0.504 kg/m2, all were within 3% relative error
margin compared to the true values given before.

When the standard SA algorithm was used, the outer
loop iteration number exceeded 12 000, the maximum
outer loop number specified, regardless of the choice of
Markov chain length. The use of three strategies
mentioned before would dramatically speedup the rate
of convergence. Table 2 lists the numbers of outer loop
iteration needed for convergence corresponding to the
various choices of Markov chain length and 3in values.
In these cases l was set at 0.90. Table 3 gives the outer
loop iteration numbers needed for various Markov
chain length and l values. In these cases 3in was set at
0.00005.

From Tables 2 and 3 it is obvious that the
modification to the standard SA algorithm has dramat-
ically improved the optimization speed. The choice of
Markov chain length seems to have limited impacts on
the computational speed. The choice of 3in value,
however, has a major impact. When 3in is approaching
3out, the impacts become most significant. The value of l
is also a significant factor in determining the converging

Table 1

Observed concentration time series at xZ 500 m

ti (min) 6 10 12 14 16 20 24 36

ci (mg/l) 0.254 0.583 0.649 0.663 0.642 0.552 0.444 0.197
speed. Our numerical experiments indicated that the
best choice of l value is between 0.4 and 0.65.

4. Discussions and conclusions

From the above tests and analyses, we conclude that
the modified SA algorithm provides an effective and
speedy optimization technique for the specific parameter
estimation problem we defined in this study. For this
initial assessment of SA algorithm, we limited our
applications to an ideal one-dimensional transport
problem in order to simplify the analyses. For field
application, however, we need to further assess the
proposed algorithm with more realistic cases, i.e. non-
uniform velocity distribution and dead zones, pockets of
low velocity, natural meandering streams etc. Concen-
tration solutions given in Singh (2003) and Swamee et al.
(2000) for example will provide good starting points for
such further assessments. The performance of SA in
these more realistic transport cases can then be
examined against empirical and theoretical methods
proposed by other authors (e.g., Deng et al., 2002; Seo
and Baek, 2004).

The use of additional constraints to speed up the SA
convergence is not without its danger. The more
constraints we impose (e.g., the use of inner loop
memory function), the faster the computation will
converge, however, the less freedom the random
perturbation will have, and thus the more danger of
getting trapped in local minima. Fortunately, for the
parameter estimation problem we study, we know by
a priori that the theoretical global minimum of the
objective function is zero, i.e. the predicted concen-
trations would perfectly match the observations. As long
as we specify an outer loop valve value close enough to
zero, the parameter estimates obtained by a converged
SA optimization should be at least near global
minimum.

Table 2

The outer loop iteration numbers and the corresponding Markov

chain length and 3in values

Cooling rates l The lengths of Markov chain

100 300 500 800 1200 1600

0.95 123 170 208 195 267 147

0.90 110 121 82 128 81 85

0.85 104 90 84 107 57 62

0.80 103 109 80 90 56 75

0.75 47 55 64 46 117 87

0.70 87 43 141 80 56 56

0.65 50 144 27 65 36 22

0.60 27 47 34 20 53 40

0.50 59 23 34 21 24 59

0.40 42 64 21 25 37 33



815J.Q. Guo, L. Zheng / Environmental Modelling & Software 20 (2005) 811–815
Table 3

The outer loop iteration numbers and the corresponding Markov chain length and l values

Inner valve values The lengths of Markov chain

100 300 500 800 1200 1600 2000 3000

0.05 10 390 4356 6103 970 6735 5029 4023 4957

0.01 955 692 700 222 121 253 488 280

0.0075 150 261 282 204 217 150 221 165

0.005 163 107 133 255 115 587 120 206

0.001 134 105 106 122 81 126 82 172

0.00075 127 121 82 155 81 112 100 82

0.0005 110 121 82 128 81 85 126 84
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